Thursday, January 30, 2020

How the human brain solves complex decision-making problems

A new study on meta reinforcement learning algorithms helps us understand how the human brain learns to adapt to complexity and uncertainty when learning and making decisions. A research team succeeded in discovering both a computational and neural mechanism for human meta reinforcement learning, opening up the possibility of porting key elements of human intelligence into artificial intelligence algorithms. This study provides a glimpse into how it might ultimately use computational models to reverse engineer human reinforcement learning.

from Top Health News -- ScienceDaily https://ift.tt/37Lp45q

No comments:

Post a Comment

Researchers map the brain's self-healing abilities after stroke

A new study sheds light on one of the most severe consequences of stroke: damage to the brain's 'cables'-- the so-called nerve f...